
實務專題計畫期中摘要報告

基於沙盒系統之程式評測應用
專題編號： 112-CSIE-S001-MID
執行期限： 111 年第 1 學期至 112 年第 1 學期
指導教授： 郭忠義

專題參與人員： 109590027 溫紹傑
109590031 黃漢軒
109590033 吳秉宸

一、 摘要

NuJudger 是一個基於 Python Flask 的服
務，以資訊安全、方便性與穩定考量如何設
計一個程式評測系統的評測服務，保留提供
給予使用者的錯誤提示並同時守護評測機敏
資訊不被惡意程式外洩。我們將在這個專題
中設計一套評測機制來減少答案的出錯可能
並掌握因不當使用而造成服務崩潰的議題，
並同時考量使用 Docker佈署評測服務、使服
務具有良好的單元測試覆蓋率、使用 GitHub
Actions 持續整合（CI）確認提交通過測試與
通過靜態型別檢查。
關鍵字：程式評測服務、隱蔽通道攻

擊、沙盒、微服務

二、 緣由與目的

隨著程式評測系統在程式教學與程式
競賽中佔有重要的地位，其資安也須受到
重視。以 ZeroJudge 現有的資安漏洞能夠透
過 stderr 通道將測試資料偷出，以及 NTUT
Jenkins Judge 能夠在執行時透過惡意指令來
印出測資檔案內容，對程式競賽與程式教學
帶來了非常大的作弊風險。防禦測資被偷出
的作弊問題主要發生在評測平台提供了程式
錯誤相關的提示供給使用者進行除錯，關閉
了提示功能雖可以解決測資被偷出的問題，
但會對於使用者造成莫大的不便。
我們希望可以開發 NuJudger評測機，這

個評測機主要著重在以下幾點：

• 穩定的評測機制。
• 保證資安問題。
• 保留使用者的方便性。
• 以 HTTP POST 進行溝通，使用 Web-

hooks 回傳評測結果，易於串接現有的
評測平台。

• 支援叢集評測。

為了能夠解決市面上並沒有穩定的評測
機，我們希望可以實踐具有這些特性的評測
機，並命名為 NuJudger，希望可以使程式評
測具有安全與穩定的保障，並提供一個值得
信賴、穩定且好用的程式評測服務。

三、 研究範圍

為了探討一個良好的評測機必須具備的
條件，我們希望可以將這個專題分成幾個議
題：

1) 如何確保題目的答案是有來源保證的，
而非人工撰寫，使得因人為因素導致
題目解答不正確。

2) 如何確保評測機制能夠涵蓋所有的評
測異常情況，導致因評測異常而服務
停止。

3) 如何確保評測機能夠防禦使用者的惡
意程式攻擊（例如執行惡意指令）或使
用特定手段偷竊測試資料，使得評測
服務停止或測試資料外洩。

4) 當評測回傳結果為程式不正確時，如
何揭露足夠多的錯誤資訊使得使用者
能夠瞭解程式出現的問題，又能避免
錯誤資訊出現測資外洩的可能。

5) 許多評測服務都具有佇列凍結（Frozen
queue）的問題，主要發生在提交高峰
時評測過慢導致提交排隊的問題，我
們想要使用叢集評測的方法，使得評
測佇列凍結的情況大幅降低。

藉由解決這一系列的問題以及良好穩定
的開發，我們能夠創造一個安全、穩定且使
用者方便的評測服務。

四、 使用技術方法

評測機除了可以運作正常評測程式，我
們同時保證了測資外洩的防禦與叢集評測，
以下我們將根據評測機制、評測機防禦、測
資防禦與叢集評測來介紹這個專題的亮點。

(一) 評測機制
NuJudger 使用自設計的評測機制，使答

案的來源由出題者提供的解答程式來保證。
附錄的 Figure 1說明了當前 NuJudger預

期的評測機制。
評測機主要蒐集了提交者的程式碼（Sub-

mission）、出題者的解答程式碼（Solution）、
用於判定執行結果是否正確的確認程式碼

1



實務專題計畫期中摘要報告

（Checker）與測試資料（Test Case），透過提
交者的程式碼與測試資料得到使用者輸出
（Output），透過出題者的程式碼與測試資料
得到解答輸出（Answer），最後使用確認程式
來確認使用者輸出與解答輸出是否正確。由
此評測機制可以保證解答輸出的來源，使人
為手打錯誤導致解答錯誤的可能性降低，並
且易於其他出題者測試解答程式是否正確。

(二) 評測機防禦

NuJudger 中所有的從服務皆為沙盒服
務，沙盒服務為基於 IOI 開發的 Isolate 所開
發的網路應用程式（Web Application），沙盒
能夠限制程式的執行時間（Time Limit）、記
憶體用量（Memory Limit）、檔案開啟（Open
Files）、是否能夠連接外網（Share Net）與權
限控管等，使得沙盒服務能夠阻擋除了隱蔽
通道攻擊以外的惡意程式攻擊。

(三) 叢集評測

由於 NuJudger 中的主從服務主要皆是
使用 HTTP POST 進行資料的傳遞，利用這
樣的方式，我們可以使從服務從內網跨至外
網，僅須保證網路連通與測資是同步的。使
用這樣的方式即可由主服務控管由從服務完
成評測的評測結果，並傳回伺服器上進行資
料更新。
附錄的 Figure 2說明了當前 NuJudger預

期的微服務架構。
透過新增從服務數量，我們可以盡可能

得減少評測排隊的問題，在遇到評測提交高
峰時能夠盡可能處理評測要求，使評測佇列
發生凍結的時機大幅減少。

(四) 軟體穩定與文件化

評測機作為程式評測系統最重要的核
心，我們必須確保評測機的穩定性，Nu-
Judger 具有以下的軟體穩定策略：

• 具有 95% 以上的測試覆蓋率，透過
Codecov 監督每筆提交是否滿足測試覆
蓋率門檻

• 使用 GitHub Actions 持續整合，用於確
認以下事項是否滿足：

– 測試 Docker 是否能夠佈署。
– 每筆提交皆測試軟體是否通過測
試。

– 靜態型別檢查。
除此之外 NuJudger 也具有文件化措施，

例如使用 Swagger 制定 API 規範，利於使用
PDD的方式進行開發、使用 ReadTheDocs來
製作使用指南，利於使用者架設服務。

五、 結論

透過 NuJudger，能夠使當前的評測服務
更加穩定且安全，我們期望所有的 Online
Judge 開發者使用 NuJudger，能夠確保服務
穩定、安全且保證了使用者的體驗。除了
沙盒服務能夠隔絕程式運行環境、使程式
運行具有權限限制以及資源使用限制之外，
我們也透過了良好的開發過程，例如：Code
Review、足夠數量與顆粒度足夠小的單元測
試、靜態型別檢查以彌補 Python動態型別導
致軟體不穩定的問題，我們也大幅的保證了
核心的軟體品質。
期待在未來的不久，教育單位或比賽單

位可以不用額外考量資安風險而依然堅持全
人工或半人工批改程式，以及學生能夠使用
程式評測平台更快速、快樂的學習程式。

參考文獻

[1] M. Forišek. Security of programming contest systems.
2007.

[2] A. Kurnia, A. Lim, and B. Cheang. Online judge.
Computers & Education, 36(4):299–315, 2001.

[3] M. A. Revilla, S. Manzoor, and R. Liu. Competitive
learning in informatics: The uva online judge experi-
ence. Olympiads in Informatics, 2(10):131–148, 2008.

[4] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and
T. Sternal. A survey on online judge systems and their
applications. ACM Comput. Surv., 51(1), jan 2018.

2



實務專題計畫期中摘要報告

Figure 1: NuJudger 評測機制

Figure 2: NuJudger 微服務架構

3


