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一、 摘要 
 

本研究根據目前市場上，對於影像監

控之需求，以 TK1 實作廣視角之物件偵測

系統。主要解決兩個問題。第一，單一攝

影機盲點區域可由對向攝影機協助解

決。第二，以成本低廉但運算能力高的

TK1 進行影像分析。根據結果顯示，本研

究確實完成廣域視角之物件偵測，也驗證

完成 TK1 的開發環境與周邊功能。未來，

根據不同的需求，僅只替換核心演算法即

可。 

關鍵詞：廣域視角、TK1、影像分析  

 
二、 緣由與目的 

 
常駐型的攝影機隨處可見，被架設在

各個角落做長期的俯視錄影。有些攝影機

甚至配合著監控系統監視著某個區域。然

而，攝影機有著「視角越大、焦距越短」

的缺點，如圖一與二所示。當監視區域較

大時，會有盲點區域的產生，監控系統的

效果會降低，有時甚至造成誤報結果。本

研究將透過兩台攝影機的對視架設互相

彌補，再配合 TK1[1][2]使用 CUDA 技術

讓原本的影像辨識運算達到加速的效

果，完成無死角的俯視行人偵測系統。 

 
圖 1 攝影機視角與焦距的相對關係 

 
圖 2 盲點區域的產生 

 

三、 研究報告內容 
 

整個系統設計如下圖所示。圖三為監

控點之系統架構；圖四為監控室之系統架

構圖。 
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圖 3監控點之系統架構圖 

其中，在監控點部分，本研究採用

TK1 硬體，TK1 是一塊以視覺運算應用為

出發點的嵌入式開發板，提供開發者許多

元件與 I/O。對於我們系統而言，最大的

特點為 CUDA 技術。在 GPU 的平行運算

之下，能快速地執行影像辨識，達到 Real 
Time 的需求。為了將 TK1 的 CUDA 效能

能有效發揮，我們在此採用 CUDA 中的

Zero Copy 的功能，由於 TK1 的 Device 記

憶體和 Host 記憶體是共用的，執行 CUDA
時不需要再複製記憶體到 Device，執行結

束也不用再複製到 Host，一般的 CUDA
化在複製記憶體的過程中會花掉大部分

的時間，但在 Zero Copy 下不用複製，因

此大幅提升執行上的效能。 

 

圖 4 監控室之系統架構圖 

整個系統藉由無線方式傳輸，監控區

域有多個監控點，能夠同時讓各個監控點

傳輸即時狀況到監控室，同時透過 AP 當

作傳輸媒介達到遠端的效果，除此之外無

線的設備簡單輕巧，不像有線傳輸有實體

的線材來影響架設時的限制。 

 

（一）、系統架設部分 
將對視的兩支攝影機架設於監控區

域的邊界上，達到入口把關的效果，如下

圖五，並架設第三台 TK1 接顯示器或是電

腦做為終端，接收兩台 TK1 所發出的資

料，並決定出最後輸出結果顯示在螢幕

上。 

 
圖 5 監控區域與攝影機架設之相對位置 

 

（二）、影像辨識流程圖 

執行影像辨識時，同時參考到當前影

像與前一張影像。先對兩張影像做灰階

化、平滑法作為前處理，並將兩張影像相

減，以取得空間變化區域。若相減差值在

閥值內，則視為無變動區域，並將像素值

設定為 0；反之，則為變動區域，並將像

素值設定為 255，藉此得到一張二值化影

像。變動區域以輪廓最為明顯，因此對此

二值化影像做連通區域，即可得到完整的

變化區，便可得到 ROI 區域。對 ROI 區域

進行比例縮放，並計算 HOG 特徵[3]。將

特徵值送入事先訓練完的SVM分類器進行

分類[4][5]，若「是」行人，則監控端會

回傳訊號 1給終端；反之，則監控端會回

傳訊號 0給終端。終端會透過兩邊監控端

的結果決策出最後的輸出。 
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圖 6 影像辨識流程圖 

 

（三）、終端決策 - Sliding Window 機制 

為了降低誤報機率，因此增加 Sliding 

Window 機制，使得輸出結果不單單只是

參考當下由監控端回傳的訊號，而同時參

考了過去單位時間內的結果，來決策出最

後的輸出。系統中，我們參考的過去結果

為兩個單位，若過去兩個單位的結果加上

當下的結果，有兩個（含）以上為 1，則

最後決策判斷監控區域受到入侵；反之，

則判定為雜訊或是誤報，最後決策判斷監

控 區 域 沒 有 受 到 入 侵 。 

 

（四）、CUDA 技術加速運算 

TK1 的 CUDA 核心和一般 GPU 不太

相同，它的記憶體是和 CPU 共用的，因

此可以使用 Zero Copy 的方式，免除複製

記憶體(Host-To-Device 和 Device-To-Host)

所花的時間，讓 CUDA 化的程式得到更多

的加速。以下為 CUDA 化部分 

 

1. RGB to Gray 

每一個要灰階的點都沒有相依性，而

且運算量有 640X480 個點運算量龐大非

常適合 CUDA 化。下表為加速結果 

表 1 加速測試數據 

次數 CPU 計算  GPU 計算 

1 2.04088sec/千次 1.88231sec/千次 

2 2.22296sec/千次 1.73502sec/千次 

3 2.17264sec/千次 1.78973sec/千次 

4 2.11521sec/千次 1.87328sec/千次 

5 2.10549sec/千次 1.76374sec/千次 

平均

提升

2.131436 (sec) 1.808816 (sec) 

  提升 1.17 倍 

 

2. Sobel 與正規化 

每一個像素點要做一次計算，且計算

量龐大，每一個點之間沒有相依性，所以

適合 CUDA 化。 

表 2 加速測試數據 

 

3. 監控點與監控室傳輸 

系統的主要傳輸，把每一個監控點的

結果傳輸到監控室，但會有多個監控點，

因此監控室需要使用多執行緒的方式

[6]-[8]。以下為主要排程方法，分為 8 個

Step。 

次數  CPU 計算  GPU 計算 

1 104.982sec/千次 19.7935sec/千次

2 104.981sec/千次 20.021sec/千次 

3 105.016sec/千次 20.3526sec/千次

4 105.013sec/千次 20.3636sec/千次

5 105.028sec/千次 19.5908sec/千次

平均提升  105.004 (sec) 20.0243 (sec) 

  提升 5.24 倍 
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1st. 接收監控點的連線。 

2nd. 配置編號給監控點。 

3rd. 監控點收到編號後會回傳所取得之編

號，跟監控室再次確認配置編號。 

4th. 待所有監控點完成 Step2 或 Step7。個監

控點開始運作，傳輸與偵測執行。 

5th. 所有監控點皆完成 Step3，再開始執行。

監控點傳輸影像之 Width(寬度)給監控

室，監控室接收完成後回傳 Get。 

6th. 所有監控點完成 Step4，再開始執行。監

控點傳輸影像之 Height(高度)給監控

室，監控室接收完成後回傳 Get。 

7th. 所有監控點完成 Step5，再開始執行。監

控點傳輸影像中每個像素值給監控室，

監控室接收完成後回傳 Get。 

8th. 所有監控點完成 Step6，再開始執行。監

控點傳輸影像辨識結果給監控室，如果

在監控點判別為人會傳輸座標給監控

室，不為人則傳輸否，監控室接收完成

後回傳 Get。之後回到 Step3。 

除了 8 個 Step 以外，監控室的接收會

由監控點 123 這樣的方式開始接收，

透過 Time Sharing 技術，避免在傳輸的過

程中，因為資源競爭，而導致傳輸錯誤。

以上每個 Step 都有防止 Lost 的功能，每

次傳輸都會先確認要接收多少 bytes，並且

一定要接收到這麼多個 Byte，否則會回傳

ERROR，並且進行重傳。在 Kernel 最大

傳輸約為 1500 bytes，因此我們將傳輸一

筆資料之最大傳輸量設定為 1024bytes。 

 
四、 實驗結果 
 

下圖 7 中，為實際運行之系統設置規

劃。兩支攝影機分別接至 TK1 中，針對紅

色區域進行監控，透過無線傳輸與終端電

腦進行資訊交換，最後，將結果呈現於四

個分割畫面。有紅色框表示監控端回傳

yes 給終端。預設終端目前記錄皆為非

人，如圖 8。 

 
圖 7 系統運行畫面 

 
五、 結論 
 

本研究已經成功的藉由 TK1 完成廣

域視角之物件偵測系統。透過現有知識，

包含影像辨識基礎理論與嵌入式系統實

作，完整呈現一個實際之應用系統。 

由此成果可知，對於 TK1 的陌生程度

勢必下降，且也給予對此應用有期待的產

業一份參考。更進一步的，對於有新穎創

新的應用，便可以透過此一系統，替換核

心演算法之後，即可完成。 
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 Camera 1 Camera 2 終端結果說明 

↓

↓ 

↓ 

影

像

串

流 

↓

↓ 

↓ 

Return yes Return no 

Terminal Buffer：NN 

Camera 1 有偵測到行

人，但終端前兩次結果紀

錄皆為 0，因此判定無入

侵。 

Return yes Return no 

Terminal Buffer：NY 

有 Camera 偵測到行人，

含終端紀錄共兩次入侵

紀錄，因此判定受到入

侵！ 

Return yes Return no 

Terminal Buffer：YY 

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！ 

Return yes Return yes 

Terminal Buffer：YY 

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！ 

Return yes Return no 

Terminal Buffer：YY 

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！ 

Return yes Return yes 

Terminal Buffer：YY 

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！ 
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Return no Return no 

Terminal Buffer：YY 

無 Camera 偵測到行人，

但終端紀錄共兩次入侵

紀錄，因此判定受到入

侵！ 

Return yes Return yes 

Terminal Buffer：YN 

有 Camera 偵測到行人，

含終端紀錄共兩次入侵

紀錄，因此判定受到入

侵！ 

Return no Return yes 

Terminal Buffer：NY 

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！ 

Return no Return no 

Terminal Buffer：YY 

無 Camera 偵測到行人，

但終端紀錄共兩次入侵

紀錄，因此判定受到入

侵！ 

圖 8 物件偵測運行過程說明 


