
實務專題計畫成果摘要報告

1

以 TK1 實作廣域視角之物件偵測系統

專題編號：105-CSIE-S009
執行期限：104 年第 1 學期至 105 年第 1 學期
指導教授：陳彥霖
專題參與人員： 102590451 陳修志

102590037 呂孟穎

一、 摘要

本研究根據目前市場上，對於影像監

控之需求，以 TK1 實作廣視角之物件偵測

系統。主要解決兩個問題。第一，單一攝

影機盲點區域可由對向攝影機協助解

決。第二，以成本低廉但運算能力高的

TK1 進行影像分析。根據結果顯示，本研

究確實完成廣域視角之物件偵測，也驗證

完成 TK1 的開發環境與周邊功能。未來，

根據不同的需求，僅只替換核心演算法即

可。

關鍵詞：廣域視角、TK1、影像分析

二、 緣由與目的

常駐型的攝影機隨處可見，被架設在

各個角落做長期的俯視錄影。有些攝影機

甚至配合著監控系統監視著某個區域。然

而，攝影機有著「視角越大、焦距越短」

的缺點，如圖一與二所示。當監視區域較

大時，會有盲點區域的產生，監控系統的

效果會降低，有時甚至造成誤報結果。本

研究將透過兩台攝影機的對視架設互相

彌補，再配合 TK1[1][2]使用 CUDA 技術

讓原本的影像辨識運算達到加速的效

果，完成無死角的俯視行人偵測系統。

圖 1 攝影機視角與焦距的相對關係

圖 2 盲點區域的產生

三、 研究報告內容

整個系統設計如下圖所示。圖三為監

控點之系統架構；圖四為監控室之系統架

構圖。

 2

圖 3監控點之系統架構圖

其中，在監控點部分，本研究採用

TK1 硬體，TK1 是一塊以視覺運算應用為

出發點的嵌入式開發板，提供開發者許多

元件與 I/O。對於我們系統而言，最大的

特點為 CUDA 技術。在 GPU 的平行運算

之下，能快速地執行影像辨識，達到 Real
Time 的需求。為了將 TK1 的 CUDA 效能

能有效發揮，我們在此採用 CUDA 中的

Zero Copy 的功能，由於 TK1 的 Device 記

憶體和 Host 記憶體是共用的，執行 CUDA
時不需要再複製記憶體到 Device，執行結

束也不用再複製到 Host，一般的 CUDA
化在複製記憶體的過程中會花掉大部分

的時間，但在 Zero Copy 下不用複製，因

此大幅提升執行上的效能。

圖 4 監控室之系統架構圖

整個系統藉由無線方式傳輸，監控區

域有多個監控點，能夠同時讓各個監控點

傳輸即時狀況到監控室，同時透過 AP 當

作傳輸媒介達到遠端的效果，除此之外無

線的設備簡單輕巧，不像有線傳輸有實體

的線材來影響架設時的限制。

（一）、系統架設部分
將對視的兩支攝影機架設於監控區

域的邊界上，達到入口把關的效果，如下

圖五，並架設第三台 TK1 接顯示器或是電

腦做為終端，接收兩台 TK1 所發出的資

料，並決定出最後輸出結果顯示在螢幕

上。

圖 5 監控區域與攝影機架設之相對位置

（二）、影像辨識流程圖

執行影像辨識時，同時參考到當前影

像與前一張影像。先對兩張影像做灰階

化、平滑法作為前處理，並將兩張影像相

減，以取得空間變化區域。若相減差值在

閥值內，則視為無變動區域，並將像素值

設定為 0；反之，則為變動區域，並將像

素值設定為 255，藉此得到一張二值化影

像。變動區域以輪廓最為明顯，因此對此

二值化影像做連通區域，即可得到完整的

變化區，便可得到 ROI 區域。對 ROI 區域

進行比例縮放，並計算 HOG 特徵[3]。將

特徵值送入事先訓練完的SVM分類器進行

分類[4][5]，若「是」行人，則監控端會

回傳訊號 1給終端；反之，則監控端會回

傳訊號 0給終端。終端會透過兩邊監控端

的結果決策出最後的輸出。

 3

圖 6 影像辨識流程圖

（三）、終端決策 - Sliding Window 機制

為了降低誤報機率，因此增加 Sliding

Window 機制，使得輸出結果不單單只是

參考當下由監控端回傳的訊號，而同時參

考了過去單位時間內的結果，來決策出最

後的輸出。系統中，我們參考的過去結果

為兩個單位，若過去兩個單位的結果加上

當下的結果，有兩個（含）以上為 1，則

最後決策判斷監控區域受到入侵；反之，

則判定為雜訊或是誤報，最後決策判斷監

控 區 域 沒 有 受 到 入 侵 。

（四）、CUDA 技術加速運算

TK1 的 CUDA 核心和一般 GPU 不太

相同，它的記憶體是和 CPU 共用的，因

此可以使用 Zero Copy 的方式，免除複製

記憶體(Host-To-Device 和 Device-To-Host)

所花的時間，讓 CUDA 化的程式得到更多

的加速。以下為 CUDA 化部分

1. RGB to Gray

每一個要灰階的點都沒有相依性，而

且運算量有 640X480 個點運算量龐大非

常適合 CUDA 化。下表為加速結果

表 1 加速測試數據

次數 CPU 計算 GPU 計算

1 2.04088sec/千次 1.88231sec/千次

2 2.22296sec/千次 1.73502sec/千次

3 2.17264sec/千次 1.78973sec/千次

4 2.11521sec/千次 1.87328sec/千次

5 2.10549sec/千次 1.76374sec/千次

平均

提升

2.131436 (sec) 1.808816 (sec)

 提升 1.17 倍

2. Sobel 與正規化

每一個像素點要做一次計算，且計算

量龐大，每一個點之間沒有相依性，所以

適合 CUDA 化。

表 2 加速測試數據

3. 監控點與監控室傳輸

系統的主要傳輸，把每一個監控點的

結果傳輸到監控室，但會有多個監控點，

因此監控室需要使用多執行緒的方式

[6]-[8]。以下為主要排程方法，分為 8 個

Step。

次數 CPU 計算 GPU 計算

1 104.982sec/千次 19.7935sec/千次

2 104.981sec/千次 20.021sec/千次

3 105.016sec/千次 20.3526sec/千次

4 105.013sec/千次 20.3636sec/千次

5 105.028sec/千次 19.5908sec/千次

平均提升 105.004 (sec) 20.0243 (sec)

 提升 5.24 倍

 4

1st. 接收監控點的連線。

2nd. 配置編號給監控點。

3rd. 監控點收到編號後會回傳所取得之編

號，跟監控室再次確認配置編號。

4th. 待所有監控點完成 Step2 或 Step7。個監

控點開始運作，傳輸與偵測執行。

5th. 所有監控點皆完成 Step3，再開始執行。

監控點傳輸影像之 Width(寬度)給監控

室，監控室接收完成後回傳 Get。

6th. 所有監控點完成 Step4，再開始執行。監

控點傳輸影像之 Height(高度)給監控

室，監控室接收完成後回傳 Get。

7th. 所有監控點完成 Step5，再開始執行。監

控點傳輸影像中每個像素值給監控室，

監控室接收完成後回傳 Get。

8th. 所有監控點完成 Step6，再開始執行。監

控點傳輸影像辨識結果給監控室，如果

在監控點判別為人會傳輸座標給監控

室，不為人則傳輸否，監控室接收完成

後回傳 Get。之後回到 Step3。

除了 8 個 Step 以外，監控室的接收會

由監控點 123 這樣的方式開始接收，

透過 Time Sharing 技術，避免在傳輸的過

程中，因為資源競爭，而導致傳輸錯誤。

以上每個 Step 都有防止 Lost 的功能，每

次傳輸都會先確認要接收多少 bytes，並且

一定要接收到這麼多個 Byte，否則會回傳

ERROR，並且進行重傳。在 Kernel 最大

傳輸約為 1500 bytes，因此我們將傳輸一

筆資料之最大傳輸量設定為 1024bytes。

四、 實驗結果

下圖 7 中，為實際運行之系統設置規

劃。兩支攝影機分別接至 TK1 中，針對紅

色區域進行監控，透過無線傳輸與終端電

腦進行資訊交換，最後，將結果呈現於四

個分割畫面。有紅色框表示監控端回傳

yes 給終端。預設終端目前記錄皆為非

人，如圖 8。

圖 7 系統運行畫面

五、 結論

本研究已經成功的藉由 TK1 完成廣

域視角之物件偵測系統。透過現有知識，

包含影像辨識基礎理論與嵌入式系統實

作，完整呈現一個實際之應用系統。

由此成果可知，對於 TK1 的陌生程度

勢必下降，且也給予對此應用有期待的產

業一份參考。更進一步的，對於有新穎創

新的應用，便可以透過此一系統，替換核

心演算法之後，即可完成。

參考文獻
[1] http://www.cool3c.com/article/83490,

NVIDIA Jetson TK1 開發平台簡介
[2] http://arrayfire.com/zero-copy-on-tegra

-k1/, zero copy on TK1
[3] Navneet Dalal and Bill Triggs,

“Histograms of Oriented Gradients for
human Detection”, in Proc. Of CVPR,
pages 886-893, 2005.

[4] http://opencv.org/, opencv 官方網站
[5] http://mathworld.wolfram.com/L2-Nor

m.html, Wolfram
[6] http://www.takobear.tw/2014/02/28/bea

rsocket/, Socket 教學
[7] https://kheresy.wordpress.com/2012/07

/06/multi-thread-programming-in-c-thr
ead-pl/, c++多執行緒

[8] http://horacio9573.no-ip.org/cuda/inde
x/html, CUDA Library

 5

 Camera 1 Camera 2 終端結果說明

↓

↓

↓

影

像

串

流

↓

↓

↓

Return yes Return no

Terminal Buffer：NN

Camera 1 有偵測到行

人，但終端前兩次結果紀

錄皆為 0，因此判定無入

侵。

Return yes Return no

Terminal Buffer：NY

有 Camera 偵測到行人，

含終端紀錄共兩次入侵

紀錄，因此判定受到入

侵！

Return yes Return no

Terminal Buffer：YY

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！

Return yes Return yes

Terminal Buffer：YY

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！

Return yes Return no

Terminal Buffer：YY

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！

Return yes Return yes

Terminal Buffer：YY

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！

 6

Return no Return no

Terminal Buffer：YY

無 Camera 偵測到行人，

但終端紀錄共兩次入侵

紀錄，因此判定受到入

侵！

Return yes Return yes

Terminal Buffer：YN

有 Camera 偵測到行人，

含終端紀錄共兩次入侵

紀錄，因此判定受到入

侵！

Return no Return yes

Terminal Buffer：NY

有 Camera 偵測到行人，

含終端紀錄共三次入侵

紀錄，因此判定受到入

侵！

Return no Return no

Terminal Buffer：YY

無 Camera 偵測到行人，

但終端紀錄共兩次入侵

紀錄，因此判定受到入

侵！

圖 8 物件偵測運行過程說明

